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Abstract
This research explores the development of a novel trespasser detection architecture and
feedback system for school surveillance purposes, with the aim of reducing the laboriousness
of this currently manual and inefficient process. This was achieved by feeding images
captured by an Autonomous Land Vehicle to a pose estimation network to detect the presence
of trespassers, then feeding the resulting output to a pose classification network to detect the
action of the predicted person, with the aim of providing information as to their intentions.
This information is sent to security personnel over the messaging platform, Telegram,
allowing them to monitor a scene remotely. Overall, results suggest that this method was
highly promising in detecting a human presence, with low latencies of 1.99s on average.

1. Introduction
1.1 Background and Purpose of Research
School surveillance is a highly laborious process, a problem amplified by the large size of
modern campuses. Given the large surveillance area of modern campuses, it is physically
exhausting for the guards to cover the school grounds manually: a method both highly
inefficient and ineffective.

Although most campuses have installed closed circuit television cameras (CCTVs) to reduce
the inefficiencies in school surveillance, the effectiveness of these cameras are limited given
that they are placed at fixed locations. Moreover, naively increasing the number of CCTV
cameras scales poorly given the number of additional manpower needed to monitor the
increased number of CCTV feeds, resulting in this approach to be prohibitively expensive at
scale.

A solution to that would be to employ autonomous surveillance vehicles, which have become
popular with the inception of self-driving. Unlike the traditional approach of using CCTVs,
ALVs can move autonomously and cover a larger surveillance area. However, most robotics
platforms cost upwards of thousands, which adds significant cost considerations into

implementing these technologies in schools. To that
end, we propose using low-cost Autonomous Land
Vehicles (ALVs) for school surveillance. The
proposed ALV can detect persons and send
notifications when persons are detected, and reduce
idle time used to monitor camera feeds.

Our report is broken down into the following
sections: Section 2 details the materials and methods
behind the hardware and software components of our
project, while Section 3 delves into a discussion of
the results obtained when this system was
implemented.
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At a high-level, this school security architecture integrates an existing autonomous 6-wheeled
vehicle developed by a senior (Fig. 1), which can perform a basic line following tasks, with
PID capabilities.

1.2 Literature Review
To the best of our knowledge, the few smart surveillance systems in the market make use of
object detection networks to identify the presence of anomalies in a vicinity (Goldmeier,
2022). While suitable for surveillance, it fails to provide specific information as to the
intentions of the person(s) identified, if any. In addition, the accuracy of such a model falters
in certain conditions and environments, such as dimly-lit ones, or when image quality is low,
unless specifically trained with a large dataset (Kumar et al, 2022). To better counter this
issue, this project sought to test the efficacy of using a pose estimation network instead. Pose
estimation is a computer vision technique that predicts a pose of a person, allowing security
to be able to have a sensing of what the person may be doing and their intentions.
Furthermore, since the pose detection network extracts pose estimates as inputs to train pose
classification network eventually, it is invariant to whether the images are coloured or
grayscale, making it a greater suit for this application. As pose estimation only classifies
poses of humans, it would serve an augmented purpose of human detection, aiding with
intrusion detection.

2. Materials and Methods
The integrated system takes on the role of a patrolling personnel and notifies security guards
with its feedback system via the telegram bot. As such, the school security is able to monitor
multiple locations around the school remotely and simultaneously. Additionally, instead of
requiring security personnel to idly monitor our robots camera feed, our architecture actively
uses pose estimation to detect the presence of intruders, allowing security guards to discern
the best possible course of action to take, saving both time and energy. We show our
surveillance architecture in Figure 2. When activated by security personnel, our ALV
platform patrols the demarcated areas in the school compound via line-tracing, and detects
potential trespassers along its patrol route (Appendix A). When trespassers are detected, the
trespasser’s activity i.e. walking or jogging is detected using the process outlined in Figure 3,
and the security personnel is notified over telegram for follow-up actions.

Fig. 2: Overview of surveillance system
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Fig 3: Pose Detection and feedback architecture

2.1 Hardware

Fig. 4: Hardware overall setup with ALV Fig. 5: Hardware setup for pose detection
and feedback capabilities

We detail our ALV’s hardware system in Fig. 4-5. We use a RaspberryPi 4 Model B with a
32-bits operating system for its fast inference speed and low power consumption through its
ARM microprocessor. This makes it suitable for the processing of machine learning
algorithms, as in our use case (Appendix B). The 32-bits operating system was used instead
of the 64-bits due to the lack of open-source libraries available for the latter. We use a 32-bit
operating system (OS) over the more recent 64-bit OS because the former 32-bit OS has
better support. A Raspberry Pi Camera V2.1 is connected to the Raspberry Pi to capture
images and a MG996R Servo is used to help the camera track potential trespassers. The
Raspberry Pi communicates with an Arduino Mega 2560 microcontroller, which interfaces
with the ALV’s remaining sensors and actuators e.g., ultrasonic sensor and motors.
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We integrate the Raspberry Pi Camera and Servo using a 3D printed platform (Appendix C).

2.2 Software
To detect trespassers, our ALV uses pose estimation to obtain the pose of the trespasser.
These pose estimates are used to generate a bounding box around the trespasser and to
determine the activity of the person using a pose classification network.

2.2.1 2D Pose Estimation
2D Pose Estimation is the task of localising the key joints of a person(s) e.g. elbows, knees,
in an image. We use MoveNet to detect the landmark coordinates of 17 key joints of the
human body to perform pose estimation (Fig. 6). MoveNet is a bottom-up model that relies
on MobileNet V2 as a feature extractor (Votel & Na, 2021). Although it has a lower accuracy
than other popular networks such as OpenPose or PoseNet, it offers real-time performance
(Jo & Kim, 2022), with lower latencies than the former neural networks (Appendix D).

Fig. 6: Overview of MoveNet Pose Estimation

2.2.2 Person Detection
The task of person detection involves localising the positions of person(s) in an image. From
our estimated poses in Section 2.2.1, we generate the bounding box around person(s) by
letting the highest and lowest x and y key joint coordinates denote the 4 corners of the box.

These detections are fed into a simple servo rotation algorithm which rotates the camera and
centres the largest detected person in the camera frame. The code for this can be found in
Appendix E.

2.2.3 Pose Classification.
Pose classification is the task of classifying the person(s)’ pose in an image. We train a simple
Multi-layer Perceptron network on the pose estimation outputs from MoveNet (Fig 7).Our
pose classification network classifies person(s) poses into the classes: walking and jogging.

Fig. 7: Keypoints and resulting bounding box from a Pose Estimate
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We use the publicly available KTH Action Dataset, consisting of mono-channel videos
divided into people walking and jogging (Laptev et al, 2005), to train our pose classification
network. We extracted each frame of the video into images and used the video labels i.e.
walking/jogging to label corresponding images. The entire dataset consists of approximately
46000 video images (Fig. 8). We split the dataset into a 80/20 train-test split. The exact
number of images in each split can be found in Appendix F.

Fig. 8: Sample images from KTH Action Dataset

Given that our pose classification dataset from KTH only contains mono-channel images
while our test images during deployment are RGB images, there is a domain gap between
these two image representations. To enable our pose classification network to be invariant to
either mono-channel or RGB images, we extract domain-invariant pose estimations using
MoveNet from each image, and use these pose estimations as the input into our classifier
model.

A total of 56 epochs were trained when the accuracy of
the validation data set no longer increased significantly
after 20 epochs. The model accuracy achieved when ran
on the validation set was 92.5%. To ensure that we did
not overfit, we observed the model’s validation
accuracy trend.

Fig. 9: Model accuracy for validation and training dataset

3. Results and Discussion
3. 1 2D Pose Detection
To evaluate the effectiveness of the Pose Estimation and Pose Classification networks, testing
was conducted on 2 different datasets: a subset of test images from the KTH action database
(Appendix G), as well as a custom set of 233 images taken in a real-world setting to simulate
the actual location in which the robot would be deployed. In this section, the results of the
algorithm when deployed on each dataset will be analysed in detail.

3. 1. 1 Pose Estimation
On both datasets, key points in images were generally identified accurately. The algorithm
was able to detect the presence of people in a vicinity, even when they were some distance
away, or positioned at the edge of the camera frame.
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Some of the challenges of pose estimation include the accuracy of variability of human visual
appearance in images, partial occlusions due to self articulation and layering of objects in the
scene or high dimensionality of the pose (Sigal. L, 2016). However, when we analysed the
pose estimate of the photos under a few different cases under different conditions (i.e the
person possessing objects, person not entirely in the frame, noises in vicinity), we noted that
the pose estimates were still largely accurate under these conditions (Fig. 10-12).

Fig. 10: Person possessing
an object

Fig. 11: Person partially
occluded

Fig. 12: Noise in the vicinity

Further samples of successful estimates can be found in Appendix H. We found that the pose
estimation algorithm generalised well to a real life setting, being able to detect and identify
key points from a variety of poses, and in cluttered and clear backgrounds. This suggests that
the algorithm is largely unaffected by noise, which is key to the deployment of our
architecture in a real-world setting where background objects will be more abundant. This
obliviousness to noise indicates the reliability of the architecture in aiding with surveillance.

Notably, the fact that MoveNet is able to perform pose estimation very accurately on extreme
actions is one of the reasons for choosing this network. As it was trained on COCO and an
internal Google dataset (Active) that contains a high number of challenging fitness poses
while also experiencing significant motion blur effect, it performs pose estimation much
more accurately than identical architectures that solely trained with COCO dataset (Votel R.,
Li N., 2021). As the resolution of photos captured by the Raspberry Pi camera would not be
high and intruders may be involved in extreme actions such as running or violent actions, we
simulated a few of such actions resulting in less defined photos and found that the network
was generally able to perform pose estimation accurately in such cases.

Fig. 13: Extreme actions
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Fig. 14: Blurry images yet accurate prediction

That being said, there are occasions when key points are misidentified and placed on
inanimate objects, such as empty spaces, or on chairs. As MoveNet is a bottom-up model (Jo
B.J, Kim S.K, 2022), with its perks including the absence of biases in data, there are also its
downsides of occasionally misidentifying or inaccurately annotating key points while a
person is visibly and sufficiently in frame. This is likely because the bottom-up approach
detects all parts of each person within an image and then associates parts that belong to each
individual instead of the top-down approach that first bounds up a person by incorporating a
person detector first, estimating the location of body parts, and finally calculating a pose for
each person. The failure cases are presented below in Fig. 15, 16, 17.

Fig. 15: overlap of keypoints with
inanimate objects when the
person is partially out of frame

Fig. 16: key point of the person
inaccurately annotated when the
person’s leg overlaps with an
inanimate object

Fig. 17: Person is completely
missed

3.3 Pose Classification
When performed on the test dataset, the pose classification model yielded a mean accuracy of
92.5%, with the highest accuracy in predicting instances of walking (Fig. 18). This is likely
influenced by the similarity of conditions and poses performed by the same person between
the training and test set.

Conversely, accuracy dropped when the model was deployed on our custom dataset, with an
accuracy of 42.5% (Fig. 19). This could be due to the fact that the majority of images in the
training set used were ones in which the subject matter was positioned sideways to the
camera, where the difference in arm movements when walking or jogging were more stark.
An analysis suggests that the pose classification relies heavily on the subject matter’s arm
position: akin to how people swing their arm while walking and keeping their hands bent and
closer to their bodies when running, the algorithm tended to classify images where the subject
matter had their arms apart as ‘walking’, while images where the subject matter held their
arms closer to their body were classified as ‘jogging’ (Fig. 20). However, when applied to
images where the subject matter faced the camera, this led to inaccurate classifications due to
an overreliance on this detail.
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Fig.18: Confusion matrix of pose
classification model

Fig.19: Confusion matrix (custom dataset)

True Positive (jogging) False Positive (jogging) True Positive (walking) False Positive (walking)

Fig. 20: Sample of true/false positive cases for jogging and walking

Indeed, when we only considered images where the test subject was positioned sideways to
the camera, accuracy improved, to 58.2% (Fig. 21).

Fig. 21: Confusion Matrix (side-facing images in custom dataset)

To improve these results, further training could be conducted on a larger dataset depicting
people jogging and walking from more varied camera angles, to improve the accuracy of the
pose classification algorithm when performing on new data. The application of transfer
learning to augment images in the training set could also be considered, allowing for a
computationally efficient way of improving the model’s accuracy (Zhuang et al, 2009).
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3.2 Latency
To test the latency of our architecture, we ran the algorithm 244 times on our custom dataset,
collecting information on the latency of each successful run – i.e. one where all key points
were detected and the poses were classified. This gave us a minimum of 0.98 seconds and a
mean of 1.99 seconds. Although significantly higher latencies of 3-4 seconds were
experienced during the initialisation of the algorithm via a telegram message, the majority of
classifications had lower latencies, allowing for security personnel to receive close-to
real-time data from a scene.

3. 3 Servo rotation
The servo centres the bounding box identified, thus preventing keypoints from being
occluded and allowing for a more accurate classification (Fig. 22-23).

Fig. 22: Servo rotation to the left

Fig. 23: Servo rotation to right

However, lags experienced occasionally cause the servo to over or undercompensate when
rotating the camera to centre the bounding box.

Overall efficacy
While there exists room to improve the accuracy of the models, this architecture functions as
a dependable surveillance system, largely able in detecting the presence of people in the
vicinity. A comparison of the surveillance process reveals the efficiency of our architecture in
automating the process, when applied on a telegram bot. Instead of traversing the school
campus to seek out intruders, this highly efficient system detects and sends images of
potential intruders to the security guards directly at relatively low latencies, allowing them to
monitor areas of the school remotely, saving both time and energy (Fig. 24).
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Before: Security patrols school frequently
overnight

After: Security is able to remotely
monitor the school campus

Fig. 24: Surveillance process before/after architecture

4. Conclusion and Future Works
In summary, this project explores the development of a low-cost system for surveillance
purposes that integrates existing technologies to create a highly accurate trespasser detection
system with a Telegram-based notification module. Our approach reduces the laboriousness
of school surveillance and offers a more efficient means of detecting trespassers when
compared to existing methods where surveillance videos have to be filtered through manually
to identify the presence of intruders. The added comprehensiveness that comes with using
pose estimation and classification techniques further enhance the system, setting it apart.

We offer the following suggestions for exploration to expand upon our work:

Firstly, with regards to improving efficiency and accuracy of the servo's tracking algorithm, a
new network could be implemented. Currently, the servo motor attached to the camera’s
motion currently makes use of a ‘trial and error’ method when rotating the camera to focus
on people in the vicinity. Efficiency could be improved by calculating the exact distance and
angle of a person with respect to the camera, thereafter rotating the servo accordingly. This
could be achieved using a Monocular Depth Estimation network, which aims to infer
3-dimensional space geometry, such as the depth value of each pixel in a single
2-dimensional still image (Basu, 2021). This would inevitably allow for more accurate
footage, as well as more accurate information on the movements of persons detected, to be
obtained, but such a network would require large amounts of ground truth depth data to be
collected and hence was unfeasible to implement at the time of our project.

Thirdly, different architectures (such as the PoseNet or OpenPose models) could potentially
be used to increase the accuracy of detections made: while this could mean a compromise on
latency, further experimentation would be needed to truly ascertain the extent of this impact
to our use case.

Fourthly, the current algorithm assumes only one person in the camera’s range of vision.
While this is likely a reasonable assumption given our use case of school surveillance during
the night, where passersby nor crowds should be present, there may be occasional cases
where more than one person enters the frame. To account for this, alterations would have to
be made to the pose detection network utilised.

Lastly, a deep sort algorithm which predicts the trajectory of a person by utilising Kalman
filters, Intersection over Union (IoU) or other methods could be implemented, this would
allow for more information to be given to security with regards to where the intruder might
be headed to. However, the concern about the limited processing power of the raspberry pi to
process so many networks simultaneously surfaces.

Nevertheless, this project has led to the development of a viable surveillance and feedback
system by means of pose estimation and classification networks, creating a foundation upon
which future work can be built.
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Appendices

Appendix A

Architectural diagram of the School Surveillance System

Appendix B

Comparison between Raspberry Pi Model 3 and 4 (Allan A., 2018)

Appendix C

3D printed platform for Raspberry Pi, Raspberry Pi camera and servo
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Appendix D

Comparison of accuracy  between OpenPose, PoseNet, MoveNet Lightning & MoveNet
Thunder (Jo & Kim, 2022)

Comparison of latency between OpenPose, PoseNet, MoveNet Lightning & MoveNet Thunder
(Jo & Kim, 2022)
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Appendix E

Appendix F

Train
( 80% )

Test
( 20% )

Total

Jogging 13538 3406 16944

Walking 23291 5762 29053

Breakdown of number of images for training and test sets

Appendix G
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Test set falsely classified images

Appendix H

Case 1: Person possesses objects

15



Case 2: Person is not completely shown in frame

Case 3: Noise within the vicinity
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